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ABSTRACT 

Significant advances have been made in recent times in the domain of integrated hydraulic 

modelling of urban flooding. Development of a physically based model for dual drainage 

concept, in which urban surface is treated as a network of open channels and ponds (major 

system) connected to the sewer network (minor system), has been a step forward (Boonya-

aroonnet et al. 2006).  However, generation of reasonably realistic surface network is the main 

concern in this methodology (Djordjevic et al. 2005). 

This paper presents the results obtained by new developed tools (Boonya-aroonnet et al. 

2007) for enhancing the potential of 1D/1D modelling by more accurate GIS-based automatic 

generation of surface network features. The application of these tools to a real life case study 

is discussed. 

Simplification of high resolution of LiDAR Digital Terrain Model (DTM) by re-sampling 

original 1x1m grid to larger sizes is necessary and sensitivity is analysed. Number of ponds 

removed and cumulative and discrete volume loss charts were generated and used to 

determine the suitable threshold values for removal of small ponds. 

In generating the pathways cross-section geometry, multi-criteria optimization technique was 

deployed to study the sensitivity of the input parameters on the geometries generated and 

appropriate parameter selection process. 
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INTRODUCTION 

The flood problems arising from urban flooding range from minor ones, such as water 

entering the basements of a few houses, to major incidents, where large parts of cities are 

inundated for several days.  Most modern cities in the industrialized world have been facing 

small-scale local problems mainly due to insufficient capacity in their sewer systems during 

heavy rainstorms (Mark et al. 2004).  Hence, prevention of flooding in urban areas caused by 

inadequate sewer systems has become an important issue.  With increased property values of 

buildings and other structures, potential damage from prolonged flooding can easily become 

economically catastrophic.  For instance, in the UK, during July 2007, floods have damaged 

nearly 30,000 homes and 7,000 businesses and have taken the lives of some people as well.  

Insurers think the clean-up bill will top 2 billion pounds
1
.  The service fees paid by residents 

are used to operate and maintain urban drainage systems effectively without fear of failure, 

thereby keeping the level of service acceptable.  However, drainage systems are designed to 

cope with a defined project storm, i.e. if a stronger storm happens, flood problems may occur.  

                                                
1
 http://en.wikipedia.org/wiki/2007_United_Kingdom_floods 
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Thus, in establishing tolerable flood frequencies, the safety of the residents and the protection 

of their valuables must be in balance with the technical and economic restrictions (Schmitt et 

al 2004). 

 

The Urban Water Research Group (UWRG) of Imperial College London have been engaged 

in research to enhance the potential of 1D/1D type of model by more accurate GIS-based 

automatic generation of surface flow characteristics such as ponds and flow pathways, cross-

section geometry, connectivity, area-depth curves within the AUDACIOUS
2
 and FRMRC

3
 

projects. The approach is based on Digital Elevation Model (DEM) and land-use images 

derived from high resolution and accuracy acquisition techniques. The work presented here is 

a contribution to the ongoing research at the group.  It covers the preparation of input data and 

detailed investigation into the sensitivity analysis of the parameters associated with the 

developed tool. Simulations of the dual drainage system were carried out using InfoWorks, 

taking into account the surface flow network generated with the developed tool. 

Figure 1 presents the overall process described in this paper. The main objectives are: 

1. Investigate some of the sensitivity issues associated with the GIS based tool as 

reported by Boonya-aroonnet et al. (2007).  This has to do with the sensitivity of the 

various parameters to be used in developing the appropriate overland model; 

2. Using appropriate parameters based on the investigation, develop the surface network 

model using the GIS-Based tool.  The surface pathway network for the model consists 

of storage nodes (with its characteristics) and links (with its shapes); 

3. Introduce the output of the surface network model into commercial software, 

InfoWorks; 

4. Simulate a 1D-1D (i.e. one-dimensional in both surface network and sewer pipe flow) 

urban pluvial flooding applying the dual drainage concept model in InfoWorks; 

5. Investigate the potentials of the use of the GIS based tool in planning new 

developments especially with respect to pluvial urban flooding; 

6. Identify areas for further research 

METHODOLOGY TO GENERATE SURFACE FLOW NETWORK AND SIMULATE 

URBAN PLUVIAL FLOOD 

Data Preparation 

LiDAR data, in ESRI ASCII Grid format, was obtained from the Environment Agency. Data 

resolution is 1x1m and went through a classification and filtering processes in order to 

produce Digital Terrain Models (DTM) from the original Digital Surface Model (DSM).   

Using ArcGIS
®

 Desktop 9.1, IDRISI
®

 Andes and CatchmentSIM
®

, the necessary project files 

to generate the overland flow network modelling phase of the project were created, including 

slope and aspect images.   

Two sets of DTMs were prepared – original and smooth. Smoothening was done to remove 

spurious depressions and flat areas and as many problematic features as possible.  About 10 

iterations of the filling algorithm in CatchmentSim
®

 were applied to the original DTMs to 

produce the smooth ones. 

The original 1m resolution data from LiDAR was resampled to produce DTMs with the 

following cell sizes: 2x2m, 4x4m, 5x5m, 8x8m and 10x10m.  This exercise was carried out 

for both the original and smooth data sets.   

                                                
2
 Adaptable Urban Drainage – Addressing Change in Intensity, Occurrence and Uncertainty of 

Stormwater 
3
 Flood Risk Management Research Consortium 
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Figure 1 Overview of the Application of the GIS-Based Tool in a Case Study 

 

Sensitivity Analysis 

The sensitivity analysis was carried out on some vital input parameters of the GIS-based 

routines in order to determine the appropriate value parameters to obtain the best 

representation of overland flow. Specifically, these are the pond filtering parameters of pond 

delineation procedure and the parameters to generate flow pathways cross sections. 

The sensitivity analysis at the pond delineation phase was carried out on all the datasets 

prepared, both original and smoothened.  After this stage and following an analysis of the 

result, a DTM was chosen. Flow pathways were created using only the chosen DTM. 

Sensitivity analysis at the Cross Section Geometry process was conducted using the adopted 

DTM.   

The objective of the exercise at the pond delineation module was to determine the threshold 

value of depth and volume parameters that ensure elimination of noise from the DTM while 

minimising volume loss. Combinations of volume variations of 1m
3
, 2m

3
, 3m

3
, 4m

3
 and 5m

3
 

were employed with depth variations of 0.004m, 0.008m, 0.01m, 0.02m, 0.03m, 0.04m, 

0.06m, 0.08m, 1.0m, 1.5m and 2.0m. 

The objective of the exercise at the cross-section module was to determine the appropriate 

combination of the parameters such that there are a minimal number of cross sections ending 

up with the user pre-defined sections.   
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Case Study - Location and General Overview 

The case study used for this project is Elvetham Heath.  Elvetham Heath is an ongoing 1,868-

home development in the prospering suburbs of Hampshire (UK). It is located immediately to 

the north of Fleet in the borough of Hart.  It is bounded to the North by the M3 motorway and 

the Fleet motorway service area and to the South by the London/Southampton railway line.  

To the East is the North Hampshire Golf Club and to the West the A323.  It is connected by a 

40 – 80 minute train service from central London and is located 5-minute drive from the 

nearby town of Fleet (Figure 2).   

  
 

Figure 2. Location of Elvetham Heath Fleet 

 

The predominant land use is residential occupying 0.63km
2
 of the 1.26km

2
 site. Sewer system 

has approximately 62 manholes over the sewered area of the analysis. 

RESULTS AND DISCUSSION 

Pond Delineation 

Without applying any filtering parameters, the number of ponds generated in the original 

DTM data sets range from 607 to 32,766 while that of the smoothened DTM data sets range 

from 137 to 3,561.  A summary of the result obtained for the smoothened DTM data sets is 

shown in Table 1  

Table 1 – Normalized Volume and Pond Loss for Smooth DTMs without applying any filter 

parameter 

Cell Size No of Ponds Volume of Ponds 

(m) (No) (m
3
) 

1x1 7,303 116,158 

2x2 1,865 113,995 

4x4 749 105,270 

5x5 501 99,961 

8x8 189 94,543 

10x10 137 90,516 

 

Figure 3 shows the normalised plots showing the relationship between DTM cell size, pond 

loss and volume loss.  From the results obtained, it can be deduced that the shift from 1x1m 

DTM to a 2x2m DTM, which resulted in a loss of 90% of the ponds but only 9% of the total 

volume, may have led to a significant reduction in noise/pit cells in the further analysis of the 

DTM.  Thereafter, it was observed that an almost linear relationship exists between the pond 

loss and volume loss for the DTM with cell sizes 4x4m, 5x5m, 8x8m, and 10x10m.  This may 

represent a more physical volume loss commensurate with the corresponding pond loss. 
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Figure 3. Normalized Volume and Pond Loss for Smoothened DTMs without applying any 

filter parameter 

The filtering was done to remove the ponds that satisfy both depth and volume criteria but the 

DTM remain unchanged.  Though due to the limitation in the capacity of the tool, the volume 

figures for the original 1x1m DTM could not be determined, similar trend was observed in the 

results obtained from simulations with the original DTMs.   

Based on these observations, the 2x2m DTM was adopted for further detailed analysis.  

Figure 4 shows the spatial distribution of the ponds for the 2x2m DTM cell size and this gives 

a physical appreciation of the ponds, which helps to analyse the potential of flood 

vulnerability in the area.  The choice of the 2x2m DTM is consistent with the 

recommendations of a cell size of between 1x1m and 5x5m DTM resolution for urban flood 

analysis (Mark et al 2004).  

Pond Filtering 

This analysis was carried out for all the datasets.  Thus, volume-loss curves such as those in 

Figure 5 were generated.  From the curves generated, three zones were identified, Zones A, B 

and C.  In Zone A, the five volumes being tested against various depths exhibits the same 

trend.  This may be due to the very small depth values being tested in relation to cell sizes.  It 

is also believed that some noise is still inherent in the DTM in this zone. 

In Zone B, the individual volume loss curves spread out further, reflecting their relative 

volume values.  From each curve, there is a point where further variation in depth does not 

produce any change in the cumulative volume loss.  This point is here referred to as the Pond 

Filtering Optimum Depth (PFOD).  And Zone C is the zone after the PFOD for each volume 

curve.  It was also observed that the coarser the DTM being tested, the more pronounced is 

Zone C as the PFOD is attained quicker. 

 

Lisbon Data Set 

To determine whether the curves and trends observed on the cumulative volume-loss charts 

for the Elvetham Heath data sets can be standardised for the GIS-based routine tool, the 

analysis was further conducted on a dataset from Lisbon (Portugal). The source of the Lisbon 

DTM is also LiDAR, originally in 1x1m resolution and then re-sampled to different cell sizes 

– 2x2m, 4x4m, 5x5m, 8x8m, and 10x10m.   
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Figure 4. Spatial Distribution of Ponds Generated in 2x2m DTM resolution (Elvetham) 

 

 

Figure 5. Cumulative Volume Loss Curve for a 2x2m DTM 

From the curves generated with the Lisbon datasets, the three zones were also observed, but 

their lengths and sizes differ.  For instance, Zone A is more pronounced in the Lisbon data 

sets and PFOD is hardly attained with the depths tested.  This may be due to the fact that the 

results from the use of this tool will reflect to a large extent, terrain characteristics, which is 

different from place to place.   

Threshold Values for Pond Filtering 

From the cumulative volume-loss charts, it can be clearly determined, for each volume filter 

value, the PFOD, which is the point at which further increases in depths will not longer result 

in any further reduction in cumulative volume. However, further analysis was necessary to 

determine the combination of volume / depth threshold value.  This was carried out bearing in 

mind the major goals of this exercise, which is to achieve a balance between minimisation of 

volume loss and elimination of noise from the DTM.    

Zone A 

Zone B 

Zone C 

PFOD 
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The approach adopted to carry out this analysis was to plot the differential (discrete) volume 

loss curves against the depth values.  The result of this is as shown in Figure 6.  The depth 

0.02m came out as the turning point for the pond curves.  On the volume curves, the turning 

point (depth value) for the 1m
3
 line coincide with the value from the ponds’ curves and a 

linear increase was observed for the turning points from 1m
3
 to 5m

3
. 

 
    (a)   (b)     

Figure 6 (a,b) Differential (Discrete) changes in ponds/volume vs depths 

From this, 0.02m was adopted as the threshold depth value for the 2x2m DTM.  This is the 

inflexion point in differential ponds’ curves, which also correspond to the lowest inflexion 

point on the differential volume curves.  The threshold volume adopted was 1m
3
.  Here, the 

volume loss is 0.112% of the total pond volume; the surface area of the ponds filtered is 

473,040m
2
, which represents about 14.60% of the total area of the catchment.  

Figure 7 shows the pond distributions for the 2x2m-filtered DTM in terms of volume and 

surface areas. 

88

427

198

44 47 9 12 0 1 1
0

200

400

600

800

1000

1200

1 10 50 100 500 1000 10000 20000 30000 40000

Vol (cub m)

F
re

q
u
e
n
c
y

 

0 0

192
146

400

48 22 19

0

100

200

300

400

500

600

700

800

1 10 50 100 1000 2500 5000 40000

Vol (sq m)

F
re

q
u

e
n

c
y

 
(a) Ponds’ Volume Distribution – 2x2m 

DTM (Filtered) 

(b) Ponds’ Area Distribution – 2x2m DTM 

(Filtered) 

Figure 7. 2x2m Smoothened DTM pond volume and area distribution before and after 

filtration 

Flow pathways delineation 

Figure 8 shows the number of pathways generated for different DTM cell sizes, without 

applying any filter parameters to the DTMs.  The path delineation exercise for the 2x2m DTM 

with the selected filter parameters eventually resulted in the generation of 519 flow pathways 

connecting the ponds together.   
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Figure 8 Number of Flow Pathways Generated vs DTM Cell Size (Smoothen Data Sets) 

Figure 9 shows the paths and ponds on the study layout.  This clearly shows the areas of flood 

vulnerability for this development. 

 
Figure 9 Spatial Distribution of Ponds and Flow Pathways for 2x2m DTM 

Cross Section Geometry 

Sensitivity analysis was carried out on the input parameters, which are Longitudinal Interval 

(LI), Cross-section Interval (CI), Buffer Radius (BR), Minimum depth of flow (MinD) and 

Maximum depth of flow (MaxD).  The objective of the exercise here is to determine the 

appropriate combination of the parameters such that there is a minimal number of cross 

section ending up with the user pre-defined sections.  Multi-parameter optimization technique 

was deployed and the analysis was carried out in a stepwise manner, also recognising the 

obvious fact that the BR and CI both lie on the same axis and some kind of relationship is 

expected between them.    

Buffer Radius:  When tested against different minimum depths, the impact of BR and the 

different minimum depths on the number of paths assigned the default section is as shown in 

Figure 10.  This is for a fixed LI of 10m while the CI is normalized by the DTM cell size.  

From figure 11, the number of paths assigned the default pathway profile is sensitive to the 

value of BR input parameter.  This is not the expected result.  It was being expected that 

larger values of buffer radius will give less paths assigned the default pathways because this 

will give the algorithm the opportunity to search for terrain related data further on the lateral 

axis.  A look into some of the assumptions made during the development of the algorithm 

may explain this; otherwise, this seems inconclusive and needs to be further tested. 
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LI = 10m; MinD = 0.05m
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(a) Minimum depth of 0.01m (b) Minimum depth of 0.05m 

Figure 10 – Buffer Radius Sensitivity Curves for different Minimum Depths 

Cross-sectional Interval: From Figures 10, it can be deduced that the number of paths 

assigned the default pathway profile is also sensitive to the value of the cross-section interval 

used for the analysis.  For a given BR, the higher the CI, the lower the number of pathways 

assigned the default sections.  Also, at a CI value of 8 times the cell size, the BR values tested 

gave the same result.  Also, based on the findings, the cross sectional interval must be chosen 

such that it is less than or equal to the buffer radius (CI < BR). 

Minimum Depth:  As shown in Fig 10 (a) and (b), the number of paths assigned the default 

pathway profile are sensitive to the Minimum depth value used for the analysis.  With a given 

LI of 10m, it was observed that the range of the output values for various BRs with a MinD of 

0.01m is 18-60%.  For a MinD of 0.05m, this range is 30-65%.   

Longitudinal Interval: Figure 11 (a-b) suggests that the number of paths assigned the default 

pathway profile is not sensitive to the value of LI.  In physical terms, this will appear untrue 

because the shorter the distances between the cross-sections, the more details are captured to 

give a representation of the channel cross-section, which is close to reality.  A value of 4 

times the cell size also seems to be an optimum CI for this data set. 

Maximum Depth:  The maximum depth of flow was found not to be a sensitive parameter.  

However, a value of 1m is however recommended. 
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LI = 20m; MinD = 0.01m
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(a) Sensitivity of BR: LI=10m, MinD=0.01m (b) Sensitivity of BR: LI=20m, MinD=0.01m 

Figure 11 Sensitivity of Longitudinal Interval and Cross-section Interval 

Summary 

Based on the analysis done and the application of judgement, the following values were 

adopted - Longitudinal Interval – 10m; Maximum Depth – 2m; Minimum Depth – 0.01m; 

Cross Section Interval – 6x cell size; Buffer Radius – 20m.  With these parameters, 37% of 

the 519 flow pathways identified were assigned the default pathway. 
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CONCLUSIONS 

The GIS-based tool is indeed an innovation and its completion and deployment has the 

potential to assist in the identification of areas prone to pluvial flooding.  This would be very 

useful to modellers and planners, especially when analysing such issues such as system 

performance and effects caused by new urban developments under extreme rainfall events.   

The main conclusions of the sensitivity analysis research carried out in this project are as 

follows: 

1. The DTM size adopted for analysis will affect the modelling results. There is the need 

to choose the right DTM cell size for analysis when using this tool.  

2. Pond delineation/filtering – When filtering ponds to eliminate noise while minimising 

volume loss, the combination of pond depth and volume is a sensitive filtering 

parameter.  

3. From the comparison between the results obtained from testing Elvetham and Lisbon 

data sets, it was clear that the Volume Loss Curves’ characteristics are not 

standardised for different data sets.  Hence, there is the need to develop appropriate 

charts for new datasets to be modelled with the tool. 

4. Cross Section Geometry: Based on the sensitivity analysis carried out on the input 

parameters to generate the appropriate cross-section geometry, the following 

conclusions are drawn:  

a. The number of pathways generated representing the terrain features is sensitive 

to the input parameters of Cross-section interval (CI), minimum depth of open 

channels and Buffer radius. Different combinations of these are possible.  The 

following recommendations are based on the results and analysis from this 

study – a value of CI between 6 and 8 times the DTM cell size and a Min 

Depth of 0.01m.     

b. Maximum Depth is not sensitive – a value greater than or equal to 1m is 

recommended.   

c. Longitudinal Interval (LI) was expected to be an important parameter, which 

should have been sensitive, but it appears not to be sensitive.  There is the need 

to investigate further into this issue. 

d. Though the Buffer Radius turns out to be a sensitive parameter as expected but 

it exhibits a somewhat ‘reversed’ sensitivity.  There is a need for further 

investigation into this as well. 
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